Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Agric Food Chem ; 72(12): 6250-6264, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491001

RESUMO

Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Obesos , Doenças Neuroinflamatórias , Obesidade/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
2.
J Adv Res ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295877

RESUMO

INTRODUCTION: Dehydrocostus lactone (Dehy), a natural sesquiterpene lactone from Saussurea lappa Clarke, displays remarkable efficacy in treating cancer and gastrointestinal disorders. However, its anti-gastric cancer (GC) effect remains poorly understood. OBJECTIVES: Our study aimed to elucidate the anti-GC effect of Dehy and its putative mechanism. METHODS: The anti-GC effect was assessed with MTT, colony formation, wound healing and transwell invasion assays. Cell apoptosis rate was detected by Annexin V-FITC/PI binding assay. Network pharmacology analysis and XF substrate oxidation stress test explored the underlying mechanism and altered metabolic phenotype. Lipogenic enzyme expressions and neutral lipid pool were measured to evaluate cellular lipid synthesis and storage. Biolayer interferometry and molecular docking investigated the direct target of Dehy. Autophagosomes were observed by transmission electron microscopy and MDC staining, while the autophagic flux was detected by mRFP-GFP-LC3 transfection. The clinical significance of ACLY was confirmed by tissue microarrays. Patient-derived xenograft (PDX) models were adopted to detect the clinical therapeutic potential of Dehy. RESULTS: Dehy prominently suppressed GC progression both in vitro and in vivo. Mechanistically, Dehy down-regulated the lipogenic enzyme ACLY, thereby reducing fatty acid synthesis and lipid reservation. Moreover, IKKß was identified as the direct target of Dehy. Dehy inhibited the phosphorylation of IKKß, promoting the ubiquitination and degradation of ACLY, thereby resulting in lipid depletion. Subsequently, GC cells initiated autophagy to replenish the missing lipids, whereas Dehy impeded this cytoprotective mechanism by down-regulating LAMP1 and LAMP2 expressions, which disrupted lysosomal membrane functions, ultimately leading to apoptosis. Additionally, Dehy exhibited potential in GC clinical therapy as it enhanced the efficacy of 5-Fluorouracil in PDX models. CONCLUSIONS: Our work identified Dehy as a desirable agent for blunting abnormal lipid metabolism and highlighted its inhibitory effect on protective autophagy, suggesting the future development of Dehy as a novel therapeutic drug for GC.

3.
Int Immunopharmacol ; 127: 111352, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091833

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) is a frequently intervention for patients with locally advanced gastric cancer (GC). Nevertheless, its impact on the tumor immune microenvironment remains unclear. METHODS: We used immunohistochemistry to identify T-cell subpopulations, tumor-associated neutrophils (TANs), and tumor-associated macrophages (TAMs) in the GC microenvironment (GCME) among paired samples (pre-chemotherapy and post-chemotherapy) from 48 NAC-treated patients. Multiplex immunofluorescence (mIF) was performed to assess immune biomarkers, including CK, CD4, CD8, FOXP3, PD1, PD-L1, CD163, CD86, myeloperoxidase and Arginase-1 in paired samples from 6 GC patients whose response to NAC were rigorously defined. RESULTS: NAC was intricately linked to enhanced CD8+:CD4+ ratio, reduced CD163+ M2-like macrophages, augmented CD86+ M1: CD163+ M2-like macrophage ratio, and diminished FOXP3+ regulatory T cells (T-regs) and TANs density. Based on mIF, PD1+CD8+T-cells, FOXP3+T-regs, PD-L1+ TANs, and CD163+ M2-like macrophages exhibited marked reduction and greater co-localization with tumor cells following NAC. The pre-NAC FOXP3+ T-regs and CD163+ M2-like macrophages content was substantially elevated in the response cohort, whereas, the post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were intricately linked to the tumor pathologic response. We observed greater CD163+ M2-like macrophages and tumor cells co-localization following NAC, which was correlated with tumor pathologic response. Lastly, multivariate analysis revealed that post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were stand-alone indicators of positive patient prognosis. CONCLUSIONS: NAC converts the GCME to an anti-tumorigenic state that is conducive to enhanced patient outcome. These finding can significantly benefit the future planning of highly efficacious and personalized GC immunotherapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Antígeno B7-H1 , Terapia Neoadjuvante , Biomarcadores , Prognóstico , Carcinogênese , Fatores de Transcrição Forkhead , Microambiente Tumoral
4.
J Ethnopharmacol ; 319(Pt 3): 117342, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879505

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY: Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS: Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT: A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION: Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Patrinia , Humanos , Caspase 3 , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB
5.
Aging (Albany NY) ; 15(19): 10105-10116, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751586

RESUMO

LncRNA has been shown to play an important role in tumors, but the functions of most lncRNAs in colorectal cancer is not clear. By analyzing the transcriptome data of tumor tissues and adjacent tissues, we identified the lncRNA profiles that were abnormally expressed in colorectal cancer and selected the abnormally highly expressed lncRNA SNHG25 for further study. The functional assays showed that after knocking down SNHG25, the metastatic ability of colorectal cancer cells was significantly reduced. Western blot and immunofluorescence assays showed that inhibiting SNHG25 would affect the expression of Vimentin and E-Cadherin. In terms of mechanism, the results of RNA pull down assays, RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays showed that SNHG25 could promote MMP2 expression by adsorbing miR-296-3p. In addition, chromatin immunoprecipitation (ChIP) assays and promoter luciferase reporter assays revealed that PAX5 could activate the transcription of SNHG25 in colorectal cancer cells. Our study proved that SNHG25 acts a pro-metastasis role in colorectal cancer, enriching the theory of the functions of lncRNA in colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Luciferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
6.
Front Pharmacol ; 14: 1159829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601051

RESUMO

Jianpi Yangzheng Xiaozheng decoction (JPYZXZ) is an empirical traditional Chinese medicine formula that has been reported to significantly prolong the survival of patients with advanced gastric cancer (GC). However, its underlying mechanism have not been fully elucidated. The present work aims to explore the possible mechanism of JPYZXZ on regulating GC progression. We firstly confirmed the inhibitory effect of JPYZXZ in GC MKN74 cells and 615-strain mice, which was possibly mediated with IL-6/JAK2/STAT3 pathway dependent PD-L1 expression. Moreover, we showed that JPYZXZ diminished the expression levels of GC-derived exosomal PD-L1 in MFC murine cells and xenograft GC model, as well as stage IIA-IIIB GC patients. We further found that in different types of tumor-infiltrating immune cells, PD-L1 expression was most positively correlated with myeloid-derived suppressor cells (MDSCs) in GC in the TISIDB database. We isolated exosomes derived from supernatants of MFC cells and co-cultured with bone marrow cells derived from C57BL/6 mice, and further revealed that the expansion of MDSCs was mediated by GC-derived exosomal PD-L1. Meanwhile, our results indicated that JPYZXZ inhibited the delivery of exosomal PD-L1 from GC cells to bone marrow cells, thereby alleviating exosomal PD-L1-induced differentiation and expansion of MDSCs in the tumor microenvironment. This led to a decrease in the levels of several immunosuppressive factors, including iNOS, Arg-1, TGF-ß, IL-10, and IL-6, in 615-strain mice. Moreover, clinical data also revealed a significant positive relationship between exosomal PD-L1 and polymorphonuclear MDSCs under the JPYZXZ treatment in stage IIA-IIIB GC patients. In conclusion, our study confirmed that exosomal PD-L1 could be a key factor in controlling MDSCs differentiation in GC. JPYZXZ alleviated GC progression via suppressing exosomal PD-L1 mediated expansion of MDSCs, thereby remodeling the immunosuppressive tumor microenvironment, which provided the experimental evidence for the clinical application of JPYZXZ in the treatment of GC via PD-L1.

7.
Int J Oncol ; 63(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37449524

RESUMO

Despite advances in diagnosis and treatment, gastric cancer (GC) remains a refractory disease, which limits overall survival. Therefore, it is key to identify novel targets to develop more effective and precise treatment. Circular RNAs (circRNAs) serve essential roles in the process of various human cancers. Through analyzing GSE83521 dataset, the present study identified a novel circRNA derived from ribosomal protein S19 (circRPS19), which was considered a potential treatment target for GC. Results of RT­qPCR indicated that circRPS19 was upregulated in GC compared with normal gastric epithelial cells. Loss­of function assays revealed that silencing of circRPS19 suppressed proliferation and aerobic glycolysis but increased apoptosis of GC cells. circRPS19 upregulated ubiquitin­specific processing protease 7 (USP7) expression by sponging microRNA (miR)­125a­5p. circRPS19 stabilized hexokinase 2 (HK2) protein by USP7­mediated deubiquitination of HK2. In vivo experiments confirmed that circRPS19 promoted GC progression and aerobic glycolysis. Taken together, circRPS19 induced aerobic glycolysis of GC cells by stabilizing HK2 protein via the miR­125a­5p/USP7 axis and thus promoting the progression of GC. These findings suggested that circRPS19 served a critical role in the progression of GC and may be a novel therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Sobrevivência Celular/genética , Peptidase 7 Específica de Ubiquitina , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
8.
J Ethnopharmacol ; 311: 116450, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023839

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Developing complementary and effective drugs with less toxicity is urgent for gastric cancer (GC) therapy. Jianpi Yangzheng Decoction (JPYZ) is a curative medical plants formula against GC in clinic while its molecular mechanism remains to be further elucidated. AIM OF THE STUDY: To evaluate the in vitro and in vivo anticancer efficacy of JPYZ against GC and its potential mechanisms. MATERIALS AND METHODS: The effect of JPYZ on regulating the candidate targets were screened and examined by RNA-Seq, qRT-PCR, luciferase reporter assay, and immunoblotting. Rescue experiment was conducted to authenticate the regulation of JPYZ on the target gene. Molecular interaction, intracellular localization and function of target genes were elucidated via Co-IP and cytoplasmic-nuclear fractionation. The impact of JPYZ on the abundance of target gene in clinical specimens of GC patients was evaluated by IHC. RESULTS: JPYZ treatment suppressed the proliferation and metastasis of GC cells. RNA seq revealed JPYZ significantly downregulated miR-448. A reporter plasmid containing CLDN18 3'-UTR WT exhibited significant decrease in luciferase activity when co-transfected with miR-448 mimic in GC cells. CLDN18.2 deficiency promoted the proliferation and metastasis of GC cells in vitro, as well as intensified the growth of GC xenograft in mice. JPYZ reduced the proliferation and metastasis of GC cells with CLDN18.2 abrogation. Mechanically, suppressed activities of transcriptional coactivator YAP/TAZ and its downstream targets were observed in GC cells with CLDN18.2 overexpression and those under JPYZ treatment, leading to cytoplasmic retention of phosphorylated YAP at site Ser-127. High abundance of CLDN18.2 was detected in more GC patients who received chemotherapy combined with JPYZ. CONCLUSION: JPYZ has an inhibitory effect on GC growth and metastasis partly by elevating CLDN18.2 abundance in GC cells, indicating more patients may benefit from combination therapy of JPYZ and the upcoming CLDN18.2 target agents.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Claudinas/genética , Claudinas/metabolismo
9.
Int Immunopharmacol ; 117: 109886, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805200

RESUMO

The tumor microenvironment (TME) contains complex components, of which the most well-known one is the tumor-associated fibroblast (CAF) that participates in the development and progression of tumors. A high abundance of CAFs implies that tumor stroma is also abundant and often predicts a poor prognosis, especially in terms of immunotherapeutic resistance. In this study, DAZ interacting zinc finger protein 1 (DZIP1) was identified to be upregulated in CAFs and malignant epithelial cells based on single-cell sequencing. Furthermore, results from The Cancer Genome Atlas database showed that this gene was highly positively associated with the mesenchymal phenotype in gastric cancer (GC). In addition, molecular experiments verified that DZIP1 directly promoted the proliferation of CAFs and enhanced the epithelial-mesenchymal transition (EMT) of GC cells to drive angiogenesis. Also, the upregulated DZIP1 in GC cells was found to directly promote invasion and metastasis. Finally, multiplex immunofluorescence and immunohistochemistry showed that DZIP1 was correlated with the immunosuppressive microenvironment of GC and resulted in a poor response to immunotherapy. Overall, our findings suggest that DZIP1 is expressed in both tumor parenchyma and mesenchyme and that it is involved in shaping the immunosuppressive microenvironment and inducing EMT by participating in tumor-stromal signaling crosstalk.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Tolerância Imunológica , Terapia de Imunossupressão , Microambiente Tumoral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Pharmacol Res ; 188: 106644, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603607

RESUMO

poorly cohesive (PC) gastric cancer (GC) (PC-GC) is a distinct histological subtype of GC and is defined as a tumor consisting of isolated or small clusters of tumor cells with poorly differentiated and metastatic characteristics. According to multiple studies, PC-GC is intrinsically heterogeneous, with mesenchymal variants being the most aggressive. However, to date, the molecular mechanisms associated with PC-GC are still not fully understood. This study investigated the role of the USP51/ZEB1/ACTA2 axis in promoting GC metastasis. Single-cell sequencing revealed that E-box binding homeobox 1 (ZEB1) expression was significantly increased in a subpopulation of low-adherent cells and was an independent prognostic factor in GC patients. Furthermore, the bulk transcriptome analysis revealed a significant positive correlation between Ubiquitin Specific Peptidase 51 (USP51), ZEB1, and Actin Alpha 2 (ACTA2), and our data further confirmed that all three were highly co-localized in PC-GC tissues. According to the findings of in vitro and in vivo experiments, USP51 was able to maintain ZEB1 expression to promote ACTA2 transcription, thereby activating the mesenchymal phenotype of GC cells and promoting tumor metastasis. Moreover, USP51 could recruit and activate stromal cells, including M2-like macrophages and fibroblasts, through cancer cells. Clinical data suggested that overexpression of USP51 predicts that patients have difficulty benefiting from immunotherapy and is associated with immune-exclusion tumor characteristics. Collectively, the findings of this study shed light on a key mechanism by which elevated USP51 expression induces Epithelial-mesenchymal transition (EMT) in GC cells, hence facilitating GC cell proliferation, survival, and dissemination. In this view, USP51/ZEB1/ACTA2 may serve as a candidate therapeutic target against GC metastasis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Actinas/metabolismo , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
11.
Cancers (Basel) ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230863

RESUMO

Gastric cancer is the most common malignancy of the human digestive system. Long noncoding RNAs (lncRNAs) influence the occurrence and development of gastric cancer in multiple ways. However, the function and mechanism of LINC01526 in gastric cancer remain unknown. Herein, we investigated the function of LINC01526 with respect to the malignant progression of gastric cancer. We found that LINC01526 was upregulated in gastric cancer cells and tissues. The function experiments in vitro and the Xenograft mouse model in vivo proved that LINC01526 could promote gastric cancer cell proliferation and migration. Furthermore, LINC01526 interacted with TAR (HIV-1) RNA-binding protein 2 (TARBP2) and decreased the mRNA stability of G protein gamma 7 (GNG7) through TARBP2. Finally, the rescue assay showed that downregulating GNG7 partially rescued the cell proliferation inhibited by LINC01526 or TARBP2 silencing. In summary, LINC01526 promoted gastric cancer progression by interacting with TARBP2, which subsequently degraded GNG7 mRNA. This study not only explores the role of LINC01526 in gastric cancer, but also provides a laboratory basis for its use as a new biomarker for diagnosis and therapeutic targets.

12.
Sci Rep ; 12(1): 13245, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918393

RESUMO

The TBC (Tre-2/Bub2/Cdc16, TBC) structural domain is now considered as one of the factors potentially regulating tumor progression. However, to date, studies on the relationship between TBC structural domains and tumors are limited. In this study, we identified the role of TBC1 domain family member 8 (TBC1D8) as an oncogene in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and Cox regression analysis, showing that TBC1D8 may independently predict CRC outcome. Functional enrichment and single-cell analysis showed that TBC1D8 levels were associated with hypoxia. TBC1D8 levels were also positively correlated with M2 macrophage infiltration, which may have a complex association with hypoxia. Taken together, these results show that the TBC1D8 gene is involved in colorectal carcinogenesis, and the underlying molecular mechanisms may include hypoxia and immune cell infiltration.


Assuntos
Neoplasias Colorretais , Proteínas Ativadoras de GTPase , Centers for Disease Control and Prevention, U.S. , Neoplasias Colorretais/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Hipóxia/genética , Estados Unidos , Proteínas rab de Ligação ao GTP/metabolismo
13.
Front Oncol ; 12: 904911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837105

RESUMO

Colon adenocarcinoma (COAD) accounts for 95% of colon cancer cases, with the 5-year survival rate significantly affected by local or distant metastases. Yiqi Jianpi Huayu Jiedu decoction (YJHJD), based on the theory of "nourish qi, invigorate the spleen, remove blood stasis, and detoxify", has long been applied and shown to be remarkable in the prevention and treatment of gastrointestinal tumors. However, the underlying therapeutic mechanisms of YJHJD have not been fully elucidated. Herein, we first confirmed hsa-miR-374a-3p as a tumor suppressor based on its lower expression in the plasma of patients with COAD with liver metastasis and association with more advanced local progression. We also verified WNT3 as a potential target of hsa-miR-374a-3p and observed its increased expression in COAD tissues. Furthermore, we showed that the hsa-miR-374a-3p/Wnt3/ß-catenin axis was responsible for epithelial-mesenchymal transition (EMT) and cellular plasticity in COAD, as well as poorer patient prognosis. Our results showed that YJHJD inhibited motility and colony potential in vitro, as well as liver metastasis of COAD in vivo. Moreover, YJHJD induced a reversal of EMT and cellular plasticity-related molecular expression, increased hsa-miR-374a-3p, and decreased Wnt3 and ß-catenin levels. In addition, silencing of hsa-miR-374a-3p weakened YJHJD inhibition, whereas the ß-catenin inhibitor XAV939 partially repaired it. Taken together, these results demonstrated that YJHJD suppressed the EMT and cellular plasticity of COAD by regulating hsa-miR-374a-3p/Wnt3/ß-catenin signaling.

14.
J Gastrointest Oncol ; 13(3): 912-922, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35837168

RESUMO

Background: The goal of the current research was to investigate circATXN7 expression in esophageal cancer (EC) and its impact on the proliferation, migration, and invasion of EC cells. Methods: Determination of circATXN7 expression in esophageal cancer tissues and adjacent tissueswas carried out using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and we further analyzed the correlation between patients' clinical characteristics and circATXN7 expression. EC cell lines (EC-9706, Eca-109, TE-1, KYSE-30, and KYSE-150) and normal esophageal cell line (HET-1A) were cultured, and circATXN7 expression was detected by qRT-PCR. The lowest circATXN7-containing Eca-109 cells were selected to be transfected with an overexpressing lentiviral vector (circATXN7). EC-9706 cells with the highest expression of circATXN7 were selected for transfection with knockdown vectors [short hairpin RNA (shRNA)#1 and shRNA#2] of the circATXN7 sequence. Cell proliferation was determined via MTT assay. The formation of cell clones was investigated via colony formation assay. Transwell migration assay was utilized to determine cell migration and invasion ability. Results: Significantly higher levels of circATXN7 were observed in EC tissues compared with paracancerous tissues (P<0.01), and circATXN7 expression level showed a significant correlation with the tumor/lymph nodes/metastasis (TNM) stage and metastasis of lymph nodes (P<0.05). Among all esophageal cell lines, EC-9706 had the highest expression level and Eca-109 had the lowest expression level. The MTT assay revealed that circATXN7 overexpression could significantly promote the proliferation of Eca-109 cells, while circATXN7 knockdown was capable of significantly inhibiting EC cell proliferation. The colony formation experiments revealed a significant increase in the number of clones in the circATXN7 overexpression model and a significant decrease in the circATXN7 knockdown model. The results of transwell migration experiments suggested that circATXN7 overexpression could promote EC cell invasion and migration, while knockdown of circATXN7 expression was associated with significant inhibition of the invasion and migration of these cells. Conclusions: CircATXN7 exerted a critical role in the incidence and progression of EC. This study identified a novel molecular target and established a theoretical basis for the early detection and treatment of EC.

15.
Phytomedicine ; 103: 154229, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691076

RESUMO

BACKGROUND: Modified Jianpi Yangzheng decoction (mJPYZ), as an empirical decoction of Traditional Chinese medicine has been shown significantly to prolong the survival of patients with advanced stage gastric cancer. Pyruvate kinase M2 (PKM2), has attracted attention for its important role on cellular aerobic glycolysis, however, few studies focus on PKM2 non-metabolic roles in tumor progression. PURPOSE: Our study aimed to investigate the potential role of gastric cancer exosomes containing PKM2 in regulating tumor-associated macrophages (TAM) and the mechanism of mJPYZ against gastric cancer. METHODS: Colony Formation Assay, flow cytometry and TUNEL staining were employed to estimate the effect of mJPYZ on gastric cancer in tumor-bearing mice and cells. Western blot analyzed apoptosis-related protein expression changes. Network pharmacology and bioinformatics predicted potential exosomes modulation of mJPYZ in gastric cancer. Exosomes were isolated and co-cultured with TAM. Diff-Quik Staining observed the TAM morphological changes when incubating with gastric cancer cells exosomes. Flow cytometry and immunofluorescence were performed to demonstrate whether exosomes PKM2 involved in TAM polarization. RESULTS: mJPYZ induced apoptosis of gastric cancer cells by targeting PKM2 and downregulating PI3K/Akt/mTOR axis in vivo and in vitro. Network pharmacology showed potential exosomes modulation of mJPYZ in gastric cancer. We extracted exosomes and found mJPYZ decreased the abundance of serum exosomes PKM2 in patients with advanced gastric cancer and xenograft tumor model. Additionally, we firstly detected and confirmed that PKM2 is a package protein of exosomes extracted from gastric cancer cells, and mJPYZ could diminish the content of exosomal PKM2 in gastric cancer cells. Importantly, mJPYZ reduced the delivery of exosomal PKM2 from tumor cells to macrophages, and alleviated exosomal PKM2-induced differentiation of M2-TAM in tumor microenvironment, eventually inhibited gastric cancer progression. CONCLUSION: Gastric cancer exosomes containing PKM2 could lead to M2 macrophages differentiation, thereby promoting gastric cancer progression. Our findings provide a rationale for potential application of mJPYZ in the treatment of gastric cancer via PKM2.


Assuntos
Medicamentos de Ervas Chinesas , Exossomos , Piruvato Quinase , Neoplasias Gástricas , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/patologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piruvato Quinase/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Hormônios Tireóideos/metabolismo , Microambiente Tumoral
16.
J Inflamm Res ; 15: 3065-3082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637872

RESUMO

Background: As one of the most immunogenic malignancies, skin cutaneous melanoma (SKCM) is mainly characterized by a high prevalence in immune-compromised patients and a brisk lymphocyte infiltration in the tumor microenvironment (TME). However, to date, studies on deubiquitination in SKCM are still very limited. Methods: Public data with regard to this study in SKCM patients were acquired from The Cancer Genome Atlas (TCGA) and the Gene-Expression Omnibus (GEO) databases. We stratified TCGA-SKCM cases using consensus clustering and identified independent prognostic factors in deubiquitinating enzymes encoding genes (DECGs) by LASSO-Cox analysis. USP35 transcriptome level was examined using public data and validated by Immunohistochemical (IHC) staining at the protein level. Enrichment analysis was used to explore the potential functions of USP35, and the TISCH database, providing further evidence at the single-cell level. The CIBERSORT algorithm was used to assess the relationship between USP35 and the immune microenvironment, and IHC was used to further evaluate the relationship between USP35 and immunotherapy response. Finally, we used the cBioPortal and the Methsurv database to analyze the significance of genomic alterations of USP35 in melanoma. Results: Our results showed that DECGs can be effectively used to stratify SKCM patients, suggesting their potential significance in the development of SKCM. Furthermore, USP35 overexpression was significantly associated with an unfavorable prognosis. We further revealed that USP35 may be involved in the activation of TORC1 signaling. Most importantly, USP35 was found to be significantly associated with an immunosuppressive TME, both in terms of negative correlation with the abundance of infiltrating CD8+ T cells and in terms of the fact that patients with high USP35 expression may benefit less from immunotherapy than those with low USP35 expression. Conclusion: Deubiquitinating enzymes are of great importance in the diagnosis and treatment of SKCM, and USP35 is an extremely promising target for immunotherapy.

17.
J Inflamm Res ; 15: 2461-2476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449599

RESUMO

Background: Gap junctions, as one of the major ways to maintain social connections between cells, are now considered as one of the potential regulators of tumor metastasis. However, to date, studies on the relationship between gap junctions and colorectal cancer (CRC) are limited. Methods: We synthesized connexins-coding gene expression data from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as MEXPRESS database, Gene Set Cancer Analysis (GSCA) database, Human Protein Atlas (HPA) database, Tumor Immune Single Cell Hub (TISCH) database, Search Tool for Retrieval of Gene Interaction Relationships (STRING), and Cytoscape software, etc., to investigate the biological mechanisms that may be involved in connexins. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of GJA4. Results: We found that CRC patients can be divided into two connexin clusters and that patients in cluster C1 had shorter survival than in cluster C2. The infiltration of M1 macrophages and NK cells was lower in cluster C1, while the levels of M2 macrophages and immune checkpoints were higher, indicating an immunosuppressed state in cluster C1. In addition, the epithelial-mesenchymal transition (EMT) phenotype was significantly activated in cluster C1. We observed that GJA4 was up-regulated in colorectal cancer tissues, which was related to poor prognosis. It was mainly expressed in fibroblasts, but the expression levels in normal intestinal epithelial cells were low. Finally, we found that GJA4 was associated with M2 macrophages and may be a potential immunosuppressive factor. Conclusion: We found that there is a significant correlation between abnormal connexins expression and patients' prognosis, and connexins play an important role in stromal-tumor interactions. Connexins, especially GJA4, can help enhance our understanding of tumor microenvironment (TME) and may guide more effective immunotherapeutic strategies.

18.
Sci Rep ; 12(1): 5720, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388021

RESUMO

The formation of gastric cancer (GC) is a complicated process involving multiple factors and multiple steps. The tumor-immune microenvironment is essential for the growth of GC and affects the prognosis of patients. We performed multiple machine learning algorithms to identify immunophenotypes and immunological characteristics in GC patients' information from the TCGA database and extracted immune genes relevance of the GC immune microenvironment. C-X-C motif chemokine receptor 4 (CXCR4), belongs to the C-X-C chemokine receptor family, which can promote the invasion and migration of tumor cells. CXCR4 expression is significantly correlated to metastasis and the worse prognosis. In this work, we assessed the condition of immune cells and identified the connection between CXCR4 and GC immune microenvironment, as well as the signaling pathways that mediate the immune responses involved in CXCR4. The work showed the risk scores generated by CXCR4-related immunomodulators could distinguish risk groups consisting of differential expression genes and could use for the personalized prognosis prediction. The findings suggested that CXCR4 is involved in tumor immunity of GC, and CXCR4 is considered as a potential prognostic biomarker and immunotherapy target of GC. The prognostic immune markers from CXCR4-associated immunomodulators can independently predict the overall survival of GC.


Assuntos
Neoplasias Gástricas , Quimiocinas CXC , Humanos , Prognóstico , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Microambiente Tumoral/genética
19.
Front Oncol ; 11: 767116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926270

RESUMO

Gastric cancer is the third leading cause of cancer death worldwide. Traditional Chinese medicine (TCM) is increasingly extensively applied as a complementary therapy for gastric cancer (GC) in China, which shows unique advantages in preventing gastric cancer metastasis. Previous study indicates modified Jian-pi-yang-zheng (mJPYZ) decoction inhibit the progression of gastric cancer by regulating tumor-associated macrophages (TAM). However, it is unclear whether mJPYZ can affect metabolic reprogramming of gastric cancer cells. Here, we showed that mJPYZ effectively attenuated GC cells proliferation, migration and invasion. Meantime, mJPYZ reduced the aerobic glycolysis level of GC cells in vivo and in vitro by regulating the expression and nuclear translocation of PKM2. Overexpression of PKM2 that could reverse the inhibitory effect of mJPYZ, migration and epithelial to mesenchymal transition (EMT). Our results showed PKM2/HIF-1α signaling was the key metabolic regulator of mJPYZ in GC cells. In summary, our present study suggested that abnormal PKM2 is required for maintaining the malignant phenotype of GC cells. The TCM decoction mJPYZ inhibited GC cells growth and EMT by reducing of glycolysis in PKM2 dependent manner. This evidence expanded our understanding of the anti-tumor mechanism of mJPYZ and further indicated mJPYZ a potential anti-tumor agent for GC patients. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Rutin (PubChem CID: 5280805); Lobetyolin (PubChem CID: 53486204); Calycosin-7-glucoside (PubChem CID: 71571502); Formononetin (PubChem CID: 5280378); Calycosin (PubChem CID: 5280448); Ononin (PubChem CID: 442813); P-Coumaric Acid (PubChem CID: 637542).

20.
Front Mol Biosci ; 8: 762924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901156

RESUMO

Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results: FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5ß1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion: FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...